573 research outputs found

    Cognitive dysfunction and dementia in Parkinson's disease

    Get PDF
    Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder mainly characterized by degeneration of dopaminergic neurons in the substantia nigra and the ventral tegmental area, in combination with a varying loss of central noradrenergic (locus coeruleus), cholinergic (nucleus basalis of Meynert) and serotonergic (dorsal raphe nuclei) integrity, leading to a multitude of motor and non-motor behavioral disturbances. Apart from the clinical motor hallmarks, in the early stages of disease, subtle cognitive dysfunction might be seen comprising mainly executive dysfunction, with secondary visuospatial and mnemonic disturbances. In about 20-40% of patients, these problems may eventually proceed to dementia, which constitutes an important risk factor for caregiver distress, decreased quality of life and nursing home placement. Dementia in PD is typically characterized by a progressive dysexecutive syndrome with attentional deficits and fluctuating cognition, often accompanied by psychotic symptoms. It is thought to be the result of a combination of both subcortical and cortical changes. PD-related dopaminergic deficiency in the nucleus caudatus and mesocortical areas (due to degeneration of projections from the substantia nigra and ventral tegmental area) and cholinergic deficiency in the cortex (due to degeneration of ascending projections from the nucleus basalis of Meynert), combined with additional Alzheimer-pathology and cortical Lewy bodies, may greatly contribute to dementia. Current treatment of dementia in PD is based on compensation of the profound cholinergic deficiency. Recent studies with the cholinesterase inhibitors galantamine, donepezil and rivastigmine show promising results in improving cognition and ameliorating psychotic symptoms, which must further be confirmed in randomized controlled trials

    Neural rhythms & cognitive dysfunction in Parkinson's disease

    Get PDF
    Wolters, E.C.H. [Promotor]Stam, C.J. [Promotor]Berendse, H.W. [Copromotor

    Increased cortico-cortical functional connectivity in early-stage Parkinson's disease: a MEG study

    Get PDF
    We set out to determine whether changes in resting-state cortico-cortical functional connectivity are a feature of early-stage Parkinson's disease (PD), explore how functional coupling might evolve over the course of the disease and establish its relationship with clinical deficits. Whole-head magnetoencephalography was performed in an eyes-closed resting-state condition in 70 PD patients with varying disease duration (including 18 recently diagnosed, drug-naive patients) in an "OFF" medication state and 21 controls. Neuropsychological testing was performed in all subjects. Data analysis involved calculation of three synchronization likelihood (SL, a general measure of linear and non-linear temporal correlations between time series) measures which reflect functional connectivity within (local) and between (intrahemispheric and interhemispheric) ten major cortical regions in five frequency bands. Recently diagnosed, drug-naive patients showed an overall increase in alpha1 SL relative to controls. Cross-sectional analysis in all patients revealed that disease duration was positively associated with alpha2 and beta SL measures, while severity of parkinsonism was positively associated with theta and beta SL measures. Moderately advanced patients had increases in theta, alpha1, alpha2 and beta SL, particularly with regard to local SL. In recently diagnosed patients, cognitive perseveration was associated with increased interhemispheric alpha1 SL. Increased resting-state cortico-cortical functional connectivity in the 8-10 Hz alpha range is a feature of PD from the earliest clinical stages onward. With disease progression, neighboring frequency bands become increasingly involved. These findings suggest that changes in functional coupling over the course of PD may be linked to the topographical progression of pathology over the brain. Ā© 2008 Elsevier Inc. All rights reserved

    Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease without dementia

    Get PDF
    Extensive changes in resting-state oscillatory brain activity have recently been demonstrated using magnetoencephalography (MEG) in moderately advanced, non-demented Parkinson's disease patients relative to age-matched controls. The aim of the present study was to determine the onset and evolution of these changes over the disease course and their relationship with clinical parameters. In addition, we evaluated the effects of dopaminomimetics on resting-state oscillatory brain activity in levodopa-treated patients. MEG background oscillatory activity was studied in a group of 70 Parkinson's disease patients with varying disease duration and severity (including 18 de novo patients) as well as in 21 controls that were age-matched to the de novo patients. Whole head 151-channel MEG recordings were obtained in an eyes-closed resting-state condition. Levodopa-treated patients (N = 37) were examined both in a practically defined 'OFF' as well as in the 'ON' state. Relative spectral power was calculated for delta, theta, low alpha, high alpha, beta and gamma frequency bands and averaged for 10 cortical regions of interest (ROIs). Additionally, extensive clinical and neuropsychological testing was performed in all subjects. De novo Parkinson's disease patients showed widespread slowing of background MEG activity relative to controls. Changes included a widespread increase in theta and low alpha power, as well as a loss of beta power over all but the frontal ROIs and a loss of gamma power over all but the right occipital ROI. Neuropsychological assessment revealed abnormal perseveration in de novo patients, which was associated with increased low alpha power in centroparietal ROIs. In the whole group of Parkinson's disease patients, longer disease duration was associated with reduced low alpha power in the right temporal and right occipital ROI, but not with any other spectral power measure. No association was found between spectral power and disease stage, disease severity or dose of dopaminomimetics. In patients on levodopa therapy, a change from the 'OFF' to the 'ON' state was associated with decreases in right frontal theta, left occipital beta and left temporal gamma power and an increase in right parietal gamma power. Widespread slowing of oscillatory brain activity is a characteristic of non-demented Parkinson's disease patients from the earliest clinical stages onwards that is (largely) independent of disease duration, stage and severity and hardly influenced by dopaminomimetic treatment. Some early cognitive deficits in Parkinson's disease appear to be associated with increased low alpha power. We postulate a role for hypofunctional non-dopaminergic ascending neurotransmitter systems in spectral power changes in non-demented Parkinson's disease patients. Ā© The Author (2007). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

    Origin of fluids and anhydrite precipitation at the sediment-hosted Grimsey hydrothermal field north of Iceland

    Get PDF
    The sediment-hosted Grimsey hydrothermal field is situated in the Tjƶrnes fracture zone (TFZ) which represents the transition from northern Iceland to the southern Kolbeinsey Ridge. The TFZ is characterized by a ridge jump of 75 km causing widespread extension of the oceanic crust in this area. Hydrothermal activity occurs in the Grimsey field in a 300 mƗ1000 m large area at a water depth of 400 m. Active and inactive anhydrite chimneys up to 3 meters high and hydrothermal anhydrite mounds are typical for this field. Clear, metal-depleted, up to 250 Ā°C hydrothermal fluids are venting from the active chimneys. Anhydrite samples collected from the Grimsey field average 21.6 wt.% Ca, 1475 ppm Sr and 3.47 wt.% Mg. The average molar Sr/Ca ratio is 3.3Ɨ10āˆ’3. Sulfur isotopes of anhydrite have typical seawater values of 22Ā±0.7ā€° Ī“34S, indicating a seawater source for SO42āˆ’. Strontium isotopic ratios average 0.70662Ā±0.00033, suggesting the precipitation of anhydrite from a hydrothermal fluidā€“seawater mixture. The endmember of the venting hydrothermal fluids calculated on a Mg-zero basis contains 59.8 Ī¼mol/kg Sr, 13.2 mmol/kg Ca and a 87Sr/86Sr ratio of 0.70634. The average Sr/Ca partition coefficient between the hydrothermal fluids and anhydrite of about 0.67 implies precipitation from a non-evolved fluid. A model for fluid evolution in the Grimsey hydrothermal field suggests mixing of upwelling hydrothermal fluids with shallowly circulating seawater. Before and during mixing, seawater is heated to 200ā€“250 Ā°C which causes anhydrite precipitation and probably the formation of an anhydrite-rich zone beneath the seafloor
    • ā€¦
    corecore